英語論文

時間:2023-03-17 18:00:53

導語:在英語論文的撰寫旅程中,學習并吸收他人佳作的精髓是一條寶貴的路徑,好期刊匯集了九篇優秀范文,愿這些內容能夠啟發您的創作靈感,引領您探索更多的創作可能。

第1篇

    EE6442 Assignment 3

    Fan Zhang

    University of Limerick

    MEng. Computer and Communication Systems

    ID: 0526401

    Abstract: I am a video game fan, but not an addict. Since this topic attracted me a lot, I decided to choose this one as my topic for the third assignment of Processor Architecture Module. I started to play video games since I was five. While I was playing games, I found the game console itself just like a mystery, how could they react our actions to the controller then reflects so amazing pictures on TV? Although I have read a lot about it in game magazines, I admit that I didn’t try to find the answer until I found this topic. This is a great chance for me to answer the question myself. At the same time, I want to present you this paper, which should be fun.

    This paper concerns the differences of architecture between PC and PlayStation 2. Since the purposes of PC and PlayStation 2 are different (or maybe I should say the purposes of PC include that of PlayStation 2), the different objectives decide the different design orientation. I think PlayStation 2 is a good game console for the comparison. First, a lot of documentations about PlayStation 2’s Emotion Engine can be found in the Internet. Second, as far as I know, PlayStation 2’s design has straightforward purposes: 3D games and multimedia, which makes the game console is seemed to be born for these two reasons. Contrasts to PlayStation, current PCs do very well on these two aspects, but the cost is the unstoppable upgrade of hardware. PlayStation 2 is a product born 5 years ago. Today tens of millions of people are still enjoy PlayStation games at home. 5-year-old PCs have been washed out already.

    Keywords: PC, processor, video card, system controller, bus, Emotion Engine, Vector Unit, Graphics Synthesize.

    1. INTRODUCTION

    1.1 The evolution of game performance

    The computer technology has achieved rapid evolution this year. From Figure 1.1 to Figure 1.5 you can see, in almost twenty years, how great changes of game performance are, both PC and game consoles.

    Figure 1.1: Final Fantasy I (FC) 1987 by SQUARE

    Figure 1.2: Final Fantasy XII (PlayStation 2) 2006 by SQUARE ENIX

    Figure 1.3: Prince of Persia (PC) 1989 by Broderbund

    Figure 1.4 Prince of Persia: The Two Thrones (PC) 2006 by Ubisoft

    The screenshots above are the evidences of technique developments. In these twenty years, computers are almost 10 times faster than in the 1980’s. The cost of buying a computer is decreasing simultaneously. However, the development orientations of both PC and game consoles didn’t change much during these 20 years. Here I want to say game consoles and PC are different, although they both can be classified to ‘computer’ class, although PC includes all game consoles’ functions (but the software are not compatible each other). The differences include many areas, the architecture, the media, the software producing and selling model, and the customers.

    1.2 Why they are different?

    I would rather to say it is because of the distinct purposes. Of course PC can play games, can do anything that game consoles do, and in the present, PlayStation 2, the most famous game console in the world, can connect to Internet, can print paper, even can run complete Linux operating system, but PC is general purpose, this means PC should care too much things, and be good at almost everything. For instance, PC should be good at text processing, games, printing, Internet connection, a huge amount of protocols are settled for it; PC also need to compatible with all components and software that are designed and implemented by current standards. But game consoles are different. They need only care about games, which mean most designs are flexible. At the same time, the standards which PC has to obey do not affect it at all. No extra cost, no burden, only focus on games.

    Figure 1.5: Sony’s PlayStation 2

    1.3 Multimedia

    From later 20th century, multimedia has become one of the main purposes of PC. Corresponding new technology for enhancing the capability of multimedia processing on PC has been developed as well. However, the reality of transmission speed bottleneck hasn’t been changed much. Keith Diefendorff and Pradeep K. Dubey published an article named “How Multimedia workloads will change Processor Design” in 1996. They argued the dynamic media processing would be a big challenge for current processor architecture. They also thought it will force the fundamental changes in processor design.

    Before Pentium 4, the processors shared the same character: their data cache memory was big, but instruction cache memory was relatively small. It was quite useful for most usage, for instance, word editor, e-business, stock information processing, and so on. However, Diefendorff did not think it is useful, or efficient enough for multimedia processing, for multimedia data come and forth constantly, no need to settle a huge bulk of storage space for holding the information that rarely has chance of reuse. Contrarily, multimedia processing requires more calculation than others. So, for multimedia calculation, the instruction cache memory should become larger, both caches require faster transmission speed as well. We shall see this prediction has realized much in both Pentium 4 and PlayStation 2.

    1.4 The purpose and the brief layout of the article

    This paper is mainly talk about the architectural differences between PC and PlayStation 2, which is the most famous game console in the world. The article will discuss several aspects, the whole architecture, the CPU, the motherboard, and the graphics. In the following section, the whole architectures are compared. Two processors, Intel’s Pentium 4 and PlayStation 2’s Emotion Engine are discussed and compared in the third section. The fourth section is about the bus and caching comparison. The fifth section mainly talks about PC and PlayStation 2’s graphic devices, Video card and Graphics Synthesizer. The conclusion will be made in the last section.

    2. WHOLE ARCHITECTURE COMPARISON

    2.1 PC architecture

    The basis of PC could root back to 1940’s. John von Neumann (1903-57), who constructed a very basis structure of computer, stayed his name in the history forever. The architecture of modern PC is still based mainly on his architecture. Let’s see a diagram of PC architecture as our basis of illustrating how PC works for game performance in the future.

    Figure 2.1: PC architecture--------------------------------->

    Different regions in the diagram have different clock speed. We can see the system controller is the heart of whole PC system. It carries data between processor and other components in PC over bridge. The bridge is used to connect interfaces and buses. Two kinds of bridges exist in PC, North Bridge (the system controller) and south bridge (the bus bridge). The system controller provides an interface between the processor and external devices, both memory and I/O. The system controller works with the processor to perform bus cycles.

    From the diagram we can see, the system controller makes the whole diagram to be complicated. This is because the system controller has to adjust the bus cycles between the processor and the external device that it wants to access. Briefly, the PC’s working procedure can be described as follow:

    PC executes commandsèaccess data with the help of system controllerèreturns the execution resultèexecute commandsè…

    System controller also possesses the function of controlling DMA (Direct Memory Access), which is the ability to transfer data between memory and I/O without processor intervention.

    2.2 PlayStation 2 Overview

    Let’s first see the architecture of PlayStation 2.

    Figure 2.2: the architecture of PlayStation 2---------------->

    PlayStation 2 is composed of a graphics synthesizer, the Emotion Engine, the I/O Processor (IOP), and a Sound Processor Unit (SPU). The IOP controls peripheral devices such as controller and disk drive and detect controller input, which is sent to the Emotional Engine. According to this signal, the Emotional Engine updates the internal virtual world of the game program within the video frame rate. Many physical equations need to be solved to determine the behavior of the character in the game world. After this is determined, the calculated object position is transformed according to the viewpoint, and a drawing command sequence (display list) is generated. When the graphics synthesizer receives the display list, it draws the primitive shape based on connected triangles on the frame buffer. The contents of the frame buffer are then converted from digital to analogue, and the video image appears on the TV. Finally, the Sound Processor is in charge of sound card thing, it outputs 3D digital sound using AC-3 and DTS. This is the overview of PlayStation 2 working procedure.

    2.3 Comparison

    Compare Figure 2.1 and Figure 2.2, we can see that the PC’s architecture is far more complex than that of PlayStation 2’s. There are many reasons. PC has more devices has to care. For instance, PlayStation’s I/O processor, which is act as the same role as the system controller bus in PC, the chief responsibility of this chip is to manage the different devices attached to the PS2. 2 PlayStation controller port, and MagicGate-compatible memory card interface, 2 USB ports, and a full-speed 400Mbps IEEE 1394 port, which are much less than PC. The other main reason is processor’s speed increased much faster than other devices; the devices themselves had uneven speed increments as well. In general, PlayStation 2 has simpler architecture and less components and devices.

    3. ALL ABOUT PROCESSORS

    3.1 Pentium 4 Processor

    Pentium 4 adopts Intel’s 7th generation architecture. We can see in detail from the diagram below. Since the birthday of PlayStation 2 waiting for exploring was 4th March 2000, when Pentium 4 was not published yet. It is unfair to PlayStation 2. However, Pentium 4 is the most popular processor in the present, and PlayStation 2 is globally the most popular game console, whatever.

    Figure 3.1: Pentium 4 processor architecture

    Since the previous generation architecture (Pentium III) Intel began to use hybrid CISC/RISC architecture. The processor has to accept CISC instructions, because it has to be compatible with all current software (most software is written using CISC instructions). However, Pentium 4 processes RISC-like instructions, but its front-end accepts only CISC x86 instructions. A decoder is in charge of the translation. Intel doesn’t create the path for programs using pure RISC instructions.

    CISC instructions are rather complex, decoding one may cost several clock cycles. In Pentium III era, once a CISC instruction needed to be processed several times (i.e. a small loop), the decoder had to decode the instruction again and again. In Pentium 4 this situation has been improved by replacing Pentium III’s L1 instruction cache to Trace Cache, which is placed behind the decoder. The trace cache ensures that the processor pipeline is continuously fed with instructions, decoupling the execution path from a possible stall-threat of the decoder units. After decoding stage, Intel introduces the Renamer/Allocator unit to change the name and contents of 32-bit CISC instructions of the registers used by the program into one of the 128 internal registers available, allowing the instruction to run at the same time of another instruction that uses the exact same standard register, or even out-of-order, i.e. this allows the second instruction to run before the first instruction even if they mess with the same register.

    The other big advance of Pentium 4 is its SSE2 - The New Double Precision Streaming SIMD Extensions. 128-bit SIMD package offers 144 strong instructions. Intel prepares two SIMD instruction units for Pentium 4 (64-bit each), one for instructions, and the other for data. Let’s recall Section 1.3, Pentium 4’s 128-bit SIMD extension is Intel’s efforts for meeting the future requirements for multimedia implementations. Because of that, video, games implementation capability gained the drastic enforcement.

    Pentium 4’s pipeline is the most disputable place. When it was announced, 20-stage pipeline surprised a lot of people. Intel did so because the more stage pipeline can increase the clock rate of processor. However, once the pipeline does not contain the information what processor need, the pipeline refill-time is going to be a long wait. In fact, Pentium 4 is only faster than Pentium III because it works at a higher clock rate. Under the same clock rate, a Pentium III CPU would be faster than a Pentium 4.

    Figure 3.2: Pentium 4 Pipeline

    The scheduler is a heart of out-of-order engine in Pentium 4. It organizes and dispatches all microinstructions (in other words, uops) into specialized order for execution engines.

    Figure 3.3: Pentium 4 scheduler

    Four kinds of schedulers deal with different kinds of microinstructions for keeping the processor busy all the time. The ports are Pentium 4’s dispatch ports. If you read the diagram carefully, you can see Port 1 and Port 0 each is assigned a floating-point microinstruction, Port 0 is assigned Simple FP Scheduler (contains simple Floating-point microinstructions) and Port 1 is assigned Slow / Floating Point Scheduler (contains complex floating-point microinstructions). Port 0 and Port 1 also accept the microinstructions came from Fast Scheduler. For the floating point microinstruction may run several clock cycles, Pentium 4’s scheduler monitor decides to transfer the microinstruction to Port 1 if Port 0 is busy, and vice versa. Port 2 is in charge of Load microinstructions and Port 3 deals with Store microinstructions.

    3.2 PlayStation 2’s Emotion Engine

    PlayStation 2’s designers focus deeply on the purpose of 3D games. At the same time, they had to ensure it was completely compatible with DVD video. For performing 3D games well, PlayStation 2 has to possess perfect vision and audio functions. Emotion Engine acts as the role of Geometry calculator (transforms, translations, etc), Behavior/World simulator (enemy AI, calculating the friction between two objects, calculating the height of a wave on a pond, etc). It also in charge of a secondary job of Misc. functions (program control, housekeeping, etc). In general, Emotion Engine is the combination of CPU and DSP processor.

    Figure 3.4: The architecture of Emotion Engine

    The basic architecture of Emotion Engine is show in Figure 14. The units are composed of

    (1) MIPS III CPU core

    (2) Vector Unit (two vector units, VU0 and VU1)

    (3) Floating-Point Coprocessor (FPU)

    (4) Image Processing Unit (IPU)

    (5) 10-channel DMA controller

    (6) Graphics Interface Unit (GIF)

    (7) RDRAM interface and I/O interface.

    Something interesting in the diagram you may have noticed. First, inside the Emotion Engine, there is a main bus connects all components for data communication. However, between MIP III core and FPU, VU0 and MIP III, VU1 and GIF, there are dedicate 128-bit buses connect them. Second, VU0 and VU1 have certain relationship shown in the diagram. This design extremely enhanced the flexibility of programming with Emotion Engine.

    MIPS III Core connects with the FPU and VU0 directly with the dedicated buses. The pipeline of MIPS III is 6-stage. The MIPS III is the primary and controlling part, VU0 and the FPU are coprocessors to MIPS III. They compute the behavior and emotion of synthesis, physical calculations, etc For example, in a football game, the flying orbits of the ball, the wind effect, the friction between ball and the ground need to be calculated. At the same time, 21 player’s AI needs to be implemented (the last player is controlled by the user), the activity, the lineup, etc. After the calculation, MIPS III core sends out the display list to GIF.

    VU1 has a dedicated 128-bit bus connected to GIF, which is the interface between GS (Graphics Synthesizer) and EE (Emotion Engine). VU1 can independently generate display list and send to GIF via its dedicated bus. Both of these relationships forms a kind of dedicate and flexible structure. The final goal of EE is generating display list and send to GS. The programmer can choose either programming two groups (MIPSIII + FPU + VU0 and VU1 + GIF) separately, send their display list in parallel, or programming purposely, making MIPS III + FPU + VU0 group as the “coprocessor” of VU1, for instance, generate physical and AI information then send to VU1, VU1 then produces corresponding display list. The diagram below shows the two programming methods.

    (a)                                                       (b)

    Figure 3.5: Two programming methods of Emotion Engine

    MIPS ISA is an industry standard RISC ISA that found in applications almost everywhere. Sony’s MIPS III implementation is a 2-issue design that supports multimedia instruction set enhancements. It has

    (1) 32, 128-bit general purpose registers

    (2) 2, 64-bit integer ALUs

    (3) 1 Branch Execution Unit

    (4) 1 FPU coprocessor (COP1)

    (5) 1 vector coprocessor (COP2)

    What I really want to cover are two vector processors, VU0 and VU1. This is the main reason why PlayStation 2 is powerful.

    VU0 is a 128-bit SIMD/VLIW design. The main job of VU0 is acting as the coprocessor of MIPS III. It is a powerful Floating-point co-processor; deal with the complex computation of emotion synthesis and physical calculation.

    The instruction set of VU0 is just 32-bit MIPS COP instructions. But it is mixed with integer, FPU, and branch instructions. VIF is in charge of unpacking the floating-point data in the main bus to 4 * 32 words (w, x, y, z) for processing by FMAC. VU0 also possesses 32 128-bit floating-point registers and 16 16-bit integers.

    VU0 is pretty strong. It is equipped with 4 FMACs, 1 FDIV, 1 LSU, 1 ALU and 1 random number generator. FMAC can do the Floating-Point Multiply Accumulate calculation and Minimum / Maximum in 1 cycle; FDIV can do the Floating-Point Divide in 7 cycles, Square Root in 7 cycles, and Inverse Square Root in 13 cycles. In fact, as the coprocessor of MIPS III, VU0 only uses its four FMACs. However, VU0 doesn’t have to stay in coprocessor mode all the time. It can operate in VLIW mode (as a MIPS III coprocessor, VU0 only takes 32-bit instructions. In VILW mode, the instruction can be extended to 64-bit long). By calling a micro-subroutine of VLIW code. In this case, it splits the 64-bit instruction it takes into two 32-bit MIPS COP2 instructions, and executes them in parallel, just like VU1.

    VU1 has very similar architecture than VU0. The diagram below is the architecture of VU1 possesses all function that VU0 has, plus some enhancement. First, VU1 is a fully independent SIMD/VLIW processor and deal with geometry processing. Second, VU1 has stronger capability than VU0: it has a 16K bytes’ instruction memory and a 16K bytes’ data memory, which VU0 only has 4K bytes each. VU1 acts as the role of geometry processor; it burdens more instructions and data to be computed. Third, VU1 has three different paths to lead its way to GIF. It can transmit the display list from 128-bit main bus, just as VU0 + CPU + FPU do; or it can transmit via the direct 128-bit bus between its VIF and GIF; the last one is quite interesting, the path comes out from the lower execution unit (which I will talk about later) and goes directly to GIF. Three individual paths ensure two main problems of PC 3D game programming will not happen: first, the bottleneck of bus bandwidth; second, the simplex way of programming.

    Figure 3.6: The architecture of VU1

    VU1’s VIF does much more than that of VU0 does. The VIF takes and parses in which Sony called 3D display list. The 3D display list constructs of two types of data: the VU1 programming instructions (which goes to Instruction memory) and the data that the instruction deal with (which goes to Data memory). The instruction itself can be divided into two units, Upper instruction and Lower Instruction, which directly operate on two different execution units, Upper execution unit and Lower execution unit. The 64-bit VLIW instruction can be used to deal with two operations in parallel. Recall that VU0 possesses the same function but most of time it acts only as the coprocessor of MIPS III, this mode can only operate 32-bit SIMD instructions. Programmers also rarely ask VU0 to do the same thing what VU1 is good at.

    3.3 Comparison

    I strongly agree if you think Emotion Engine is more flexible than Pentium 4. The design of Emotion Engine is completely around the performance of 3D games. Two vector units, VU0 and VU1, contribute a lot for the game performance. Pentium 4 architecture is straight, you can trace the path of data from the very beginning, and soon you will be able to know how Pentium 4 works easily. For Emotion Engine, except you are the game designer, you will never know exactly.

    I did not put too much digits in this section, the comparison of digits does not make sense at all. The comparison between two PC processors depends on digits, because they are the same kind and work in the same situation. For game consoles, without the burden of compatibility, the designers think a lot for the perfect cooperation. This would results in better performance, plus less cost. Unfortunately the programmers don’t think it is a good idea, it cost them quite a lot of time to investigate the processor to figure how it works.

    4. BUSES AND CACHEING

    4.1 PC Motherboard

    While multimedia processing requires massive quantities of data to move rapidly throughout the system, the speed difference between processor and external devices is the main bottleneck of PC. Processor companies like Intel have put a lot of energy into getting the rest of the system components to run faster, even if other vendors provide these components. Improving the performance of motherboard is a good idea. Figure 4.1 is the main structure diagram of GIGABYTE GA-8TRX330-L Pentium 4 Motherboard. The bandwidth between Processor and system controller, main memory and system controller has reached to equally incredible 6.4GB/S. However, the latency of memory is still impossible to remove. Here I want to talk something about the processor caching mechanism.

    In the present, motherboard’s FSB (Front Side Bus) frequency has over 800 megahertz. However, it is slower than that of Pentium 4, which is over 3 gigahertz. Processor runs at a multiple of the motherboard clock speed, and is closely coupled to a local SRAM cache (L1 cache). If processor requires data it will fist look at L1 cache. If it is in L1 cache, the processor read the data at a high speed and no need to do the further search. If it is not, sadly processor has to slow down to the motherboard clock speed (what a drastic brake!) and contact to system controller. System controller will check if L2 cache has the required data. If has, the data is passed to processor. If not, processor has to access the DRAM, which is a relatively slow transfer.

    4.2 About PlayStation 2’s buses and caching.

    Recall Figure 2.2, we can see 32-bit interfaces between processor and I/O Processor, main memory and I/O Processor, which can achieve 3.2GB/S bus speed. Although slower than Pentium 4, Emotion Engine itself is relatively slow as well, 300MHz MIPS III processor. However, PlayStation 2’s 32-bit interface, 10-channel DMAC, 128-bit internal bus, and small cache memory group to an incredible caching condition. Any data necessary can be store or download in time. This strategy takes 90% of DMA capability. It makes the latency which main memory generates is acceptable for Emotion Engine.

    4.3 Comparison

    This time we can talk about digits some more. Let’s see a Pentium 4’s cache memory

    L1 trace cache: 150K

    L1 data memory: 16K

    L2 memory: 256K ~ 2MB total: 422~2204K

    Let’s see PlayStation 2 next

    VU0 data memory: 4K

    VU0 instruction memory 4K

    VU1 data memory 16K

    VU1 instruction memory 16K

    MIPS III data memory: 2-way 8K

    MIPS III instruction memory: 2-way 16K total: 64K

    Contrast to Pentium 4, the cache memory of PlayStation 2 is too small. Its capability is indeed ‘weak’ in the present. Pentium 4 is able to hold more data and does more computations in parallel. However, PC architecture hasn’t been improved along with the processor. No matter how Pentium 4 fast is, present bus architecture is never going to perform Pentium 4 100% capability. PlayStation 2 achieves a nearly perfect structure and mechanism, which helps it exert as much as it can (or maybe I should say because Pentium 4 is too fast, the memory speed is relatively too slow). Besides, it remarkably low down the cost, you can afford a PlayStation 2 plus a controller with the same price of a single Pentium 4 chip.

    5. VIDEO PERFORMANCE

    5.1 Comparison of performance between PC and PlayStation 2

    Figure 5.1 Need for Speed Most Wanted (PlayStation 2) 2006 by EA GAMES

    PlayStation 2 Graphics Synthesizer (GS)

    · 150 MHz (147.456 MHz)

    · 16 Pixel Pipelines

    · 2.4 Gigapixels per Second (no texture)

    · 1.2 Gigatexels per Second

    · Point, Bilinear, Trilinear, Anisotropic Mip-Map Filtering

    · Perspective-Correct Texture Mapping

    · Bump Mapping

    · Environment Mapping

    · 32-bit Color (RGBA)

    · 32-bit Z Buffer

    · 4MB Multiported Embedded DRAM

    · 38.4 Gigabytes per Second eDRAM Bandwidth (19.2 GB/s in each direction)

    · 9.6 Gigabytes per Second eDRAM Texture Bandwidth

    · 150 Million Particles per Second

    · Polygon Drawing Rate:

    · 75 Million Polygons per Second (small polygon)

    · 50 Million Polygons per Second (48-pixel quad with Z and Alpha)

    · 30 Million Polygons per Second (50-pixel triangle with Z and Alpha)

    · 25 Million Polygons per Second (48-pixel quad with Z, Alpha, and Texture)

    · 18.75 Million Sprites per Second (8 x 8 pixel sprites)

    Figure 5.2 Needs for Speed Most Wanted (PC) 2006 by EA GAMES

    PC Graphics Chip RADEON X300 SE PCI Express

    · Bus type PCI Express (x16 lanes)

    · Maximum vertical refresh rate 85 Hz

    · Display support Integrated 400 MHz RAMDAC

    · Display max resolution 2048 x 1536

    · Board configuration

    · 64 MB frame buffer

    · Graphics Chip RADEON X300 SE PCI Express

    · Core clock 325 MHz

    · Memory clock 200 MHz

    · Frame buffer 64 MB DDR

    · Memory I/O 64 bit

    · Memory Configuration 4 pieces 8Mx16 DDR

    · Board configuration

    · 128 MB frame buffer

    · Specification Description

    · Graphics Chip RADEON X300 SE PCI Express

    · Core clock 325 MHz

    · Memory clock 200 MHz

    · Frame buffer 128 MB DDR

    · Memory I/O 64 bit

    · Memory Configuration 4 pieces 16M x 16 DDR

    · Memory type DDR1

    · Memory 128 MB

    · Operating systems support Windows? 2000, Windows XP, Linux XFree86 and X.Org.

    · Core power 16 W (Max board power)

    From the data we can see. GS is too weak, contrast to low-level video card of PC. However, the performance of PlayStation is not too that bad. I don’t want to analyze data here. What I am interested to discuss is about the performance itself.

    Let’s see Figure 5.2 in detail. Texture is very clear and exquisite. This is what big video memory offers. The tree leaves in distance need a lot of polygons to build. The video card itself is low-level; possess no special effect for the game rendering. No refection and other sparking place can be found. In general, the game performance is only ok.

    Figure 5.3 PC game rendering related architecture

    Now let’s see PlayStation 2’s performance, which is in Figure 5.1. We see a good image. If you look the image in detail, you may found the mountain beside the road is weird: the shape of mountain is not that nature, like some spectrum graphics. This is done by VU1, which draws the Bezile, build 3D graphic based on the curve. Although not good enough, how many people will actually notice that when dashing at over 200km/h with his virtual car? VU1 does a lot of job like that and it could generate a lot of shapes without too many polygons to build. Now let’s see the car, the refection of cars is true reflection (which means it is not fake texture pretended to be the reflection), we can distinguish the mountains behind, however very blur. The whole image is not as clear as Figure 5.2 because the limitation of GS’s video memory (4M). However, this image is good enough for most PlayStation 2 players.

    5.2 Some more about the video performance

    Although Pentium 4 has enough capability to process image real time, the way of implementing games is still no change. The video card read the content of texture into its local memory card, the processor only deal with the data and instructions. After the calculation, the processor stores the display list (a list, recorded with the details of all elements, for instance, one single polygon’s position and texture code) back to the main memory. Video card then access the lists and process them, generate picture, transfer to analogue signal and output. Most special effects depend on the video card. So, no good card, no good performance.

    Let’s see figure 2.2, we will see there is no direct connection between GS and main memory. At the PC’s point of view, 4MB video-memory is not enough to show a single frame with 1024*768 pixels. How is PlayStation 2 able to perform like that? The answer is bus. So we come back to section 4 again. The specialized display list (which Sony called 3D display list) is directly sent to GS, along with the required texture. GS has a huge bandwidth (3.8GB/S), its local memory can work as fast as it is (maybe it is more suitable if we call the memory as cache). GS itself supports only a few special effects. However, this situation can be improved by the simulation calculations finished by Emotion Engine… Again, PlayStation 2’s elegant design makes its all components work as a whole.

    6. CONCLUSION

    Hopefully you have got the idea of how PlayStation 2 and PC architecture differ. Let’s go through it again.

    General architecture. PCs are more complex to read, but easier to implement. The system bus directly manages all devices inter-communications. PlayStation 2’s is easy to read, but much harder to implement. The communication between each other is convenient.

    Processor architecture. The trend of processor architecture design is meeting the requirement of multimedia. Both PC’s Pentium 4 and PlayStation 2’s Emotion Engine are qualified to run multimedia applications efficiently. Pentium 4 is much stronger than Emotion Engine, but the architecture is very ‘straight’ and has to do extra jobs of translating instructions to be compatible with current applications. Emotion Engine has no this burden, the specialized 3D game performance design make it easy to handle complex calculation jobs with relatively low clock rate.

    Buses and Caching. PC has classic bottlenecks and there is no way to overcome it. Current PC buses and cache has improved a lot by increasing the bandwidth and cache volumes, but the latency of main memory cannot be solved. PlayStation 2 works on nearly full load; perfect coordination between components is almost achieved.

    Video. Although Pentium 4 can run perfectly on multimedia applications, the PC game developers don’t think so. They still stick to push the texture and other data into the video memory for one time. The awkward situation is, when you want to update your PC for high requirement games, the first component came into your mind must be the video card but processor. It is impossible to ask PlayStation 2 players to update. Emotion Engine is in charge of many jobs what PC’s video card does. The good condition of data transmission makes it is possible to implement ‘true’ multimedia processing in games, that is treating game image as media streams, no need to supply huge data storage to hold that.

    Purpose: PC’s general—purpose VS PlayStation 2’s 3D game rendering purpose.

    PlayStation 2 is 6 years old now. According to the principle of game console life expectance, it is time to hand the baton to its offspring, PlayStation 3. It is a successful game console of Sony. Contrast to PC, it is too weird, but all its weird compositions seemed so reasonable as well. PC’s architecture is classical; all components have its space for upgrade. Maybe it is too early to say the architecture should evolve. However, PlayStation 2’s architecture gave us a good lesson. If you only were interested in games, you should buy a PlayStation series, not a PC. At least, you need not worry about upgrading your components for the next game. Special architecture can make it becomes the best in specialized region.

    7. REFERENCE

    [1] William Buchanan and Austin Wilson, “Advanced PC Architecture”, ISBN: 0 201 39858 3

    [2] John L. Hennessy and David A. Patterson, “Computer Architecture—A Quantitative Approach”, ISBN: 1 55890 724 2

    [3] Keith Diefendorff and Pradeep K. Dubey, "How Multimedia Workloads Will Change Processor Design." Computer, September 1997

    [4] Jon "Hannibal" Stokes Sound and Vision: A Technical Overview of the Emotion Engine Wednesday, February 16, 2000

    [5] K. Kutaragi et al "A Micro Processor with a 128b CPU, 10 Floating-Point MACs, 4 Floating-Point Dividers, and an MPEG2 Decoder," ISSCC (Int’l Solid-State Circuits Conf.) Digest of Tech. Papers,Feb. 1999, pp. 256-257.

    [6] Jon "Hannibal" Stokes “SIMD architectures”

    arstechnica.com/articles/paedia/cpu/simd.ars

    [7] “Graphics Synthesizer – Features and General Specifications”

    arstechnica.com/cpu/1q99/playstation2-gfx.html

    [8] “The Technology behind PlayStation 2”

    ieee.org.uk/docs/sony.pdf

    [9] Michael Karbo,“PC Architecture“

    karbosguide.com/books/pcarchitecture/start.htm

    [10] Gabriel Torres, “Inside Pentium 4 Architecture”

    hardwaresecrets.com/article/235/1

    [11] Thomas Pabst, “Intel’s new Pentium 4 Architecture”

    tomshardware.co.uk/2000/11/20/intel/

    [12] KuaiLeDaYuShu, “Video Card Parameters Analysis”

    blog.yesky.com/Blog/joyelm/archive/2005/07/30/253803.html

    [13]Howstuffworks “How PlayStation 2 Works”

    entertainment.howstuffworks.com/ps21.htm

    [14] Craig Steffen “Scientific Computation on PlayStation 2 home page”

第2篇

國外專家對學生學習成功的因素通過調查得出了如下結論:在學生學習成功的因素中,良好的學習習慣占30%,興趣占25%,智力占15%,家庭占5%,其他因素占25%。高效英語復習課堂教學所要求的核心價值取向就是變學生被動學習為自主學習,因為只有自我謀劃,自我激勵,自我探究,才可能有高效。要想高度自主復習必須要成良好的學習習慣。總復習階段依然要強化下列學習習慣:課前預習和準備習慣;上課的習慣;復習的習慣;作業的習慣;聽、說、讀和寫的習慣。課外自主學習的習慣。教師要嚴格要求、反復強化,讓學生不斷實踐,采用良好的學習方法和策略,讓良好的復習習慣像鳥的翅膀一樣幫助學生高效地自主復習好英語。

二、依綱扣本,中考采用三階段四板塊循環滾動的復習模式

根據《英語課程標準》和《英語中考指南》,三階段指復習時間分為三個階段,四板塊指單元梳理板塊、專項訓練板塊、綜合訓練板塊和聽、說、讀、寫能力訓練板塊,它們互相融合互相促進,使知識和能力水平不斷循環提升。第一階段單元梳理板塊主要是梳理初中階段所學的全部的語言知識。牛津英語教材按照話題———結構———功能———情景———任務體系以單元形式編排,所以梳理語言知識以單元作板塊來整體復習較合理。按教材順序以話題和任務為主線,以及他們和功能、語法項目的關系提前分門別類的梳理,歸納四會單詞、重點詞組、重點句型、語法和課本對話等知識,匯編成講義發給學生,使學生腦子中有清晰知識體系網絡圖。第二階段專項訓練復習是對針對名詞、冠詞、非謂語動詞、并列句和復合句等作專項的訓練。此階段的任務主要通過語法線來鞏固、深化課本英語知識。第三階段綜合訓練板塊任務主要是通過專項題型和模擬測試來全面培養學生綜合應試能力水平。綜合訓練也可從英語總復習一開始時就要有計劃安排,如一個星期做一套完整的綜合試卷或專項題,以便培養整體復習英語的意識。聽、說、讀、寫能力訓練板塊始終貫穿在整個三個階段里,要反復有層次地訓練,每周要固定時間,保證訓練次數和質量,同時做好點撥和評析,傳授各種方法和技巧,使知識和能力形成互補,提高復習效率。

三、分層指導,在統一練習同時重視分層的作業布置

英語總復習階段學生的英語水平已經參差不齊,根據知識掌握程度和學習品質可以分成優秀生,中等生和后進生,其中后進生的英語水平還不如七年級學生的英語水平。那么教師既不能放棄某些學生,也不能一個層次要求所有的學生。只有根據學生個體的學情分層指導和要求才為上策。首先英語語言知識點分層要求可從教材自身出發,對于每個單元,細到梳理知識點,在此基礎上進行“淘金”活動,將知識點梳理成金字塔形,將不同的知識點對應于不同層次的學生,分層次分解知識點,對相應層次的學生提出相應的需求。其次要引進競爭機制來分層次優化,根據每位學生的能力,制訂標準分,進行獎勵,使他們個個有對手,人人有復習目標,人人有危機感,把學習積極性最大限度地調動起來。最后對于后進生特別要多進行情感關懷,根據學生不同情況幫助他們找出名自的薄弱環節,采取人盯人辦法,一方面進行面對面輔導;另一方面認真面批他們的練習和試卷,分析他們的錯誤原因,幫助他們寫出正確答案。這樣每個層次的學生都相應到達應有的復習水平,提高了復習效率。

四、重視復習反饋、培養自主復習評價能力

第3篇

關鍵詞:科技英語論文寫作;定義;敘述

中圖分類號:H315 文獻標識碼:A

文章的主體是科技論文的核心部分,是主題思想的展開和論述。作者可根據需要在文章中加小標題,將主體內容分為幾個部分進行論述。科技論文的英文寫作通常把每段的主體句(Topic Sentence)放在段落的第一句,全段圍繞主體句論述,定義與敘述是科技論文寫作中又一種常用的寫作方法。

一、定義(Definition)

(一)Introduction

When making a hypothesis(假說)or other statement, scientists must make sure that they will beunderstood by other researchers. Misunderstandings occur when there are different concepts of what is being discussed.

A definition answers the question, “What is it?” Sometimes a definition is necessary because a word or concept has more than one meaning. For example, whether carbon is a metal or nonmetal depends on how you define carbon. At other times, a definition is required because a term is being used in a special way. For example, physicists use the terms work and energy in ways that are more specific than their common meanings. A definition should be complete enough to include all the items in the category yet narrow enough to eliminate items that do not belong. The Greek philosopher Plato once defined man as a two-legged creature that has no feathers. The problem with Plato's definition was that it did not distinguish a man from other two-legged creatures without feathers. Communication between researchers is dependent on precise definitions of substances, concepts, processes, and ideas.

Greek philosopher Plato 希臘哲學家帕拉圖

(二)Sentence patterns

Sentence pattern 1:

An astronomer is a scientist whostudies the universe.

A barometeris an instrumentthat measures air pressure.

Conductionis a process by which heat is transferred.

A laboratoryis a place whereexperiments are performed.

Physicsis the study ofmatter and energy.

A volt is a unitfor measuring electrical pressure.

Sentence pattern 2:

Mercuryisa liquidmetal.

Asbestosis a fire-resistantmineral.

A dinosaurisa prehistoric reptile.

A monkeyis a small, long -tailedprimate.

(三)Application Examples

be 是

mean 意思是,意味著,意指

denote 表示,指

imply 意思是,意味著

be named 命名為,被稱為

Examples:

1. Printers are output devices.

打印機是輸出設備。

2. Multiprogramming means the existence of many programs in different parts of main memory at the same time.

多道程序意味著在主存儲器的不同部分同時存在著多個程序。

3. Data denotes a collection of facts that can serve as operands to computer program.

數據是指可作為計算機程序操作對象的集合。

4. A “system” implies a good mixture of integrated parts working together to form useful whole.

“系統”意指將協同工作各部分適當地綜合而成的一個有效的整體。

5. The first digital computer built in 1946 at the University of Pennsylvania was named ENIAC.

第一臺計算機是1946年在賓夕法尼亞大學建造的,命名為ENIAC。

二、敘述(Describing)

(一)Introduction

A description serves to introduce a scientist's view of the world. It may describe conditions, results of an experiment, chemical changes, physical movements, or what is seen through a telescope or microscope. A description may also tell the characteristics or distinctive features of an object―how it look, sounds, tastes, smells, works, or is produced.

The nature of something can be explained by describing it. For example, the concept of an atom is difficult to grasp from a definition alone, but a description of its appearance, detailing its structure and function, makes it easier to visualize.

(二)Sentence patterns

The Nile River is 4,145 miles long.

Mount Everest is 8,848 meters high.

The Dead Sea is 11 miles wide.

The Nile River has a length 4,145 miles.

The Sun has a surface temperature of 11,000°F.

The Grand Canyon has a depth of 5,500 feet.

The color of iodine is purplish black.

The texture of sand is rough and granular.

The orbits of planets are elliptical.

Pluto is relatively small.

Blue stars are extremely hot.

Copper salts are slightly blue in aqueous solutions.

(三)Application Examples

be是

be considered (to be) 被認為是,被看作

be known as 被稱為是,被認為是,即

be referred to as 稱為,叫做

be thought of as 被認為是

be regarded as 被認為是

Examples:

1.This ability to allow interrupts to interrupt previous interrupts service routines safely are referred to as nested interrupts.

允許某些中斷去中斷先前的中斷服務程序,并能正確運行的能力稱為嵌套中斷。

2.One of the most important characteristics of a computer is its capability of storing information in its memory long enough to process it.

計算機最重要的特性之一就是具有這樣一種能力,即在它的存儲器中保存信息時間長到足以對這些信息進行處理。

3.In the majority of applications the computer's capability to store and access large amounts of information plays the dominant part and is considered to be its primary characteristic.

在大部分的應用中,計算機能夠存儲和訪問大量的信息這一特性,起了關鍵的作用,并被看成是計算機的主要特點。

除了定義 (Definition) 與敘述(Describing)的寫作方法以外,科技英語論文常用的寫作方法還有:比較(Comparing)、因果(Cause and Effect)、假設(Hypothesizing)、證明(Giving Evidence)、實驗(Experiment)、計算(Calculating)、報告(Reporting)、預測(Predicting)等。

第4篇

1、提高中國文化素養符合多元化的人才需求

當今的就業市場需要多元化的外語人才,對于英語相關專業而言,社會上普遍需求的是英語與其他專業緊密結合的復合應用型人才,商務英語專業在此應運而生,培養能用英語進行諸如商務、旅游、物流、外貿、文秘、會展等商貿活動的復合型人才。在兩種文化交流的過程中,決定溝通質量的是代表中國形象的學生的中國文化素養和自身的英語水平。

2、諳熟中國文化可以助力學生的英語學習

在英語業已成為世界語的今天,商務英語專業作為英語專業的一個分支,長期以來英語學習過程中都強調英語語言知識的輸入,強調英語與商務的結合,注重發音標準、表達流利、語法運用得體等,其重視程度甚至遠遠勝于對中國文化涵養的關注。而語言內在的思想性被忽略甚至被淹沒,因此外語學習過程中母語的正遷移作用很難發揮出來。換言之,倘若學生憑借自己較高的中國文化涵養來進行英語學習,聽說讀寫的學習障礙將會大大降低,英漢雙語的相互切換也會迎刃而解。

3、熟悉中國文化有利于傳播優秀的中國文化

英語學習的終極目標不僅是實現成功的跨文化交際,更應該是把優秀的母語文化即中國文化傳播到世界。承載著幾千年文明的中國,其優秀精華的文化應該在英語學習過程中與英語這門語言站在文化對等的位置上對話。在對外漢語教學日益盛行的今天,高校商務英語專業的學生也應該盡己之力通曉中國文化及其英文講解方法思路,在商務活動中使世界通過我們更加了解中國璀璨文化。

二、商務英語專業中國文化教學現狀

1、課程設置對于中國文化的缺失

2000年南京大學的從叢教授在《“中國文化失語”:我國英語教育的缺陷》中提到“許多中國青年學者雖然具有相當程度的英語水平,但是在與西方人交往的過程中,始終顯示不出來自古文化大國的學者所應具有的深厚文化素養和獨立的文化人格……有些博士生有較高的基礎英語水平,也有較高的中國文化修養,但是一旦進入英語交流語境,便會立即呈現出‘中國文化失語癥’”。商務英語專業學生用英語表達母語文化中出現“失語”現象,是因為在英語教學中獲得用英語準確表達中國文化知識的不足。例如,介紹魯迅先生故居的一段話中很多學生把“故居”一詞翻譯成“oldhouse”,幾乎沒有學生知道地道的說法是“formerresidence”。同時,很多高校的商務英語專業課程設置上注重實用性,講求英語語言知識與商務知識的結合。作為只有36學時的選修課,課時有限,任務緊張,很多學生為完成任務而完成任務,沒有真正重視中國文化的學習與提高。

2、日常教學頻頻出現中國文化缺失

過度重視英語及英語文化而忽視中國文化導致英語文化的內化在商務英語專業學生中越來越深入,許多學生成為英語通、西方文化通,俚語通,而中國傳統文化成為許多學生的認知荒漠:課堂上問及學生“杞人憂天”、“門泊東吳萬里船”等詞句無法用英語解釋出來。今天的四六級考試中增加了段落翻譯項目,而且頻頻涉及到中國傳統文化與當今中國經濟社會發展。但是學生對于中國文化的重視程度依然不夠。不要說“四合院”“、茶馬古道”“、敦煌石窟”、就是“少林功夫”、“吉祥文化”、“筷子”等很多中國文化常見語的譯法學生都聞所未聞、瞠目結舌。比如,在介紹孔子的一段話的翻譯中,很多學生根本不知道孔子(Confucius)、儒學(theRuSchool)、孔圣人(MasterKung)。學生英語水平雖然大幅提高,母語文化卻丟之腦后,這不得不說是失衡的英語教育造就的悲哀。

3、學生測評體系對中國文化的忽視

目前高校商務英語專業對學生的測驗評價體系依然比較傳統地注重學生的聽、說、讀、寫、譯等能力。聽力考試材料來源基本上是BEC、BBC、VOA、CNN,文化背景都是清一色的西方英語國家日常生活與商務活動,很少涉及中國文化;口語考試依然一如既往地關注發音標準、表達流利、地道清晰、商務術語準確等因素;閱讀、寫作、翻譯考試也多是傳統的名詞解釋、簡答題、論述題、案例分析、計算題等,中國文化元素依然難得一見。

三、商務英語專業中國文化教學強化對策

全世界早已掀起了“漢語熱”:孔子學院的設立、漢語等級考試的興起、對外漢語教學人才的稀缺都足以為證。商務英語專業作為以英語語言為橋梁、深化英語與商務專業知識相銜接的專業,學生內在的中國文化素養亟待提高。可以從以下幾個方面著手:

1、課程設置對于中國文化可以有所傾斜

商務英語專業在課程設置方面除了大一全校開設的大學語文之外,可以考慮自己開設現代漢語及漢語語言學等課程。畢竟商務英語專業的學生在學習英語語言學的過程中一定會不自覺地發問:為什么多年的學習生涯中學校從未開設過漢語語言學呢?很多學生會盲目認為英語語言學在重要性上一定勝過漢語語言學,因此造成了學生語言學習過程中的顧此而失彼。條件允許的話,高校的商務英語專業還可以鼓勵專業教師開設與中國相關的公共選修課:英文講解的人類學、社會學、心理學、中國歷史、中國文化通史、古代詩詞及名著賞析、對外漢語教學等課程,應體現哲學、歷史、宗教、社會、教育、文化、藝術等中國文化內容,從而提高學生的中國文化素養和母語人文涵養,給學生創造良好的中國文化學習氛圍。通過這些課程,開闊學生視野,使學生更加熟悉中國文化。

2、日常教學將中國文化貫穿始終

商務英語專業教師應該自覺提高自身中國文化修養,深入學習中國文化尤其是中國傳統文化,并在日常教學中成功實現中國文化的漢英切換,注重中西文化對比、中國文化知識的傳播和對外漢語宣傳能力的提升。例如,教師在課堂上講授美國文化的五大象征時,可以啟發學生用英語討論中國文化的象征,學生熱烈討論中會涉及長城、孔子、筷子、菜系、絲綢之路、天安門廣場、故宮等許多中華文化象征,啟發學生盡可能詳盡地用英語表述中國元素。同時,教師在備課過程中應盡可能多地熟悉中國特有文化的英文譯法,多多積累中國文化各種英文介紹,例如,可以參考作品中涉及大量中國文化元素的林語堂、錢鐘書和賽珍珠的作品及英文版的《中國文化》等書籍。

3、完善學生測評體系,強調中國文化

商務英語專業的學生測評不僅應該單獨設置中國文化課程的考核,還應在綜合英語、精讀等課程的測試中體現中國元素,加入相關檢測試題,學生在備考過程中系統復習,不斷強化,中國文化素養必然會得到提高。在學生的聽、說、讀、寫、譯等能力的考試中盡可能選取與中國文化相關的資料。在學生的各類測試中增加中西文化比較,根據主題與作者觀點,適當進行廣泛的跨文化對比分析,使學生對中西方文化的特點有清楚的認識,能夠深刻地意識到祖國傳統文化的價值,通過系統教學、講解、反復訓練、復習、檢測等環節實現學生熟練用英文較準確表達中國文化相關內容。

四、結語

第5篇

按教學大綱要求,初中英語需要加強聽力訓練,但在我國初中英語教學中,存在了幾個重要的誤區,其主要表現為以下幾個方面:第一,進行教學時,許多老師采用集體中突擊的形式進行教學,沒有重視到日常教學中的積累。注重集中訓練,忽視長期積累。第二,發現學生在學習中存在的問題,沒有進行及時給予糾正。第三,聽力教學過程中,方法不正確,簡單的把聽力訓練當作聽力測試。第四,沒有重點的把學習英語的幾大關鍵進行結合,把聽、讀、說、寫進行了分離式教學。這些錯誤的教學形式很大程度上,影響到了學生在進行聽力訓練的進度與質量。如何解決這些存在的問題,成為了目前教學的關鍵。

筆者認為,可以針對本校學生學習的狀況進行調整,以達到解決這些錯誤教學方式的目的。首先,作為英語聽力訓練,它是和日常教學過程中的英語聽力相輔相成的,是一個需要長期積累的過程,這就需要英語老師在進行教學時,用英語進行教學,這是一個非常行之有效的提升學生聽力的教學方式;其次,在教材中有相關的配套聽力題,需要根據教學進度同時進行,然后隨著進度的開展進行多樣的聽力專項訓練;再次,進行英語教學時,一定要遵循先聽后說、先說后讀、先讀后寫的基本教學原則,這樣可以非常有效地把教學與聽力訓練相結合,達到聽力訓練的長期積累的目的。通過這些解決的措施,可以解決目前初中英語聽力訓練的錯誤形式。

二、初中英語聽力訓練需多樣化

在教學過程中,如果只是采用單一形式對學生進行聽力訓練,會讓許多學生產生厭學情緒,這時就需要老師采用多樣化的教學形式進行學生的英語聽力訓練,如聽英文歌曲帶動學生聽詞猜詞的興趣,或者以英語猜迷的形式提升學生的參與積極性等方式進行訓練。目的在于提升學生對英語的興趣,解除他們心中對英語聽力的恐懼心理,有效地激發出學生的參與性。例如,可以設定一個情景,也就是通常所說的情景式教學,然后通過互動交流,提升學生對聽力的興趣,通過以下的對話形式,既簡單又能讓學生有很大的參與感,讓學生容易地去完成任務,提升他們對聽力訓練的信心,又能很直觀地引導學生對問題的思考。

三、運用技巧進行教學,提升學生聽力

(一)引導學生進行推理想要學好英語,就需要更好地去理解所聽到的英語的內容,這個過程就需要學生進行合理地聽到內容進行推理與判斷。這種形式,不僅能提升學生的主觀能動性,還能大大增強學生對問題的推理,拓展學生的思維與判斷能力。例如,當訓練聽力時,學生在聽錄音前,需要先對習題進行瀏覽,大概了解整個對話的情景、人物包括這段習題中對話的大概意思,當開始聽錄音時,對之前所瀏覽習題后得到的信息進行對比,非常有效地提高了判斷的準確度。

(二)好記性不如爛筆頭,抓住重點跳過難點在進行聽力訓練過程中,學生們都是處于一個高度緊張的狀態,那么可以在邊聽的過程中,從聽力材料中提取出關鍵信息,把一些相關的數學、人物、情景做上筆記,可以用自己所習慣的方式進行關鍵信息的記錄,抓住重點,這些關鍵信息用代號或者是縮寫的形式記錄下來,有效地提高了對習題的判斷。在進行聽力訓練過程中,肯定會出現一些生詞。可以簡單做一下記錄后,直接跳過這些難點,不要在這些生詞上進行過多的思考,以免遺漏更多的有價值的信息,通過這樣長期的訓練,可以有效地避免學生的心理壓力,加強學生對聽力的處理技巧。

第6篇

4. 摘要 英文摘要一般為150-180個實詞,中文摘要一般在300字以內,中英文摘要應基本一致.其內容應包括研究目的,方法,結果,結論等,禁用"本文","作者","This paper"等作主語.詳見"科技期刊文章摘要的寫作要求".

5. 關鍵詞 每篇文章可選3~8個能反映文章主要內容的單詞,詞組或術語.英文關鍵詞應與中文關鍵詞相對應.

6.中圖分類號 請查《中國圖書館分類法》.

7. 正文 正文篇幅一般希望控制在成書5頁(記空格,圖表占位)以內.內容力求有創新,論證嚴謹,語句通順,文字精煉.

8.文中正體,斜體,黑體字符的用法:

⑴斜體.變量名稱用斜體單字母表示;下標若是由變量轉化來的則用斜體;坐標軸(如x,y)和變量(如i,j)用斜體.

⑵正體.下標由文字轉化來的說明性字符用正體;單位,詞頭用正體,如nm,pF等;幾個特殊常量用正體,如e,i,π等.

⑶黑體.矩陣,矢量名稱用黑體表示.

9.圖形要求

圖中所有線條,文字必須用黑色繪制;用線形或標識符區分;不得有背景;

圖中線條須清晰,均勻,刻度線向內側畫,并且間隔應均勻;

圖中坐標線粗0.5磅,曲線寬度為坐標線寬度的3倍;

10.表格要求 表格采用三線表,表頭中使用物理量符號/單位,如下例:

x/cm

I/mA

v/(m·s-1)

h/m

p/MPa

10

30

2.5

4

110

11.參考文獻 來稿引用他人觀點與材料,須將參考文獻按正文中出現的先后次序列于文后,文中須在引用處右上角加注"「序號".中文參考文獻必須列出相應的英文,并在后面加注"(in Chinese)".引文作者姓名均為姓前名后,最多標3名,余下用"et al."代表.

著錄格式為:(按不同析出物分類說明)

「連續出版物 主要作者.題名「J .刊名,年,卷(期):起止頁碼.

「專著 主要作者.書名「M .出版地(城市名):出版者,出版年.起止頁碼.

「譯著 主要作者.書名「M .譯者.出版地(城市名):出版者,出版年.起止頁碼.

「論文集 主要作者.題名「A .編者.論文集名「C .出版地(城市名):出版者,出版年.起止頁碼.

「會議論文 主要作者.題名「Z .會議名稱,會議召開地(城市名),召開年.

「學位論文 作者.題名「D .所在城市:保存單位,年份.

「研究報告 主要作者.題名「R .報告代碼及編號(或:保存地點:責任單位),年份.

「報紙 作者名.文章名「N.報紙名,出版日期(版次).

「電子文獻 作者.題名「EB/OL .………,發表或更新日期/引用日期.

第7篇

(1)目標需求與學習需求相結合的原則;

(2)學生、學校與社會需求兼顧的原則;

(3)大綱制定、教材選擇及教學實施要體現各種需求的原則。徐新宇提出對商務英語的需求分析要注意以下幾個方面即對將來工作環境的分析、對學生的分析、對商務英語語言的分析及對授課環境的分析等。自2009年以后有不少論文從需求分析的角度來分析商務英語專業課程設置的合理性,但主要是研究高職院校的商務英語專業。阮績智建議商務英語課程設置應遵循目的導向原則、需求分析原則、科學系統原則以及發展原則。從研究現狀來看,關于需要分析理論研究方面的文章較多,但從需求分析理論的角度對新設本科商務英語專業的課程設置進行研究的很少。因此,本文擬從需求分析理論入手,通過走訪用人單位調查企業對商務英語專業畢業生的能力要求,并根據社會需求分析的結果提出商務英語專業課程設置的改進建議。

二、社會需求分析的結果與討論

(一)用人單位招聘廣告分析作者通過走訪人才市場、深入企業等方式收集到一些典型企業的招聘廣告,筆者主要對廣告中的英語能力要求,跨文化交際能力要求和綜合素質要求進行分析。

1.英語能力要求通過對企業招聘廣告中的分析,筆者發現企業對商務英語專業學生的英語能力要求主要包括英語水平整體要求和英語技能要求。對于英語水平整體要求,多數企業都要求英語良好,通過大學英語4級考試;也有不少企業要求英語流利,通過大學英語6級考試。在調查分析中還發現,盡管商務英語專業的本科生都會參加英語專業四級和八級的考試,學生基本上都能通過專業四級考試,而且也有不少學生通過專業八級考試,但是企業招聘廣告中對專業四級和八級的要求很少。另外,在英語能力要求中出現頻率較高的兩項是口語及寫作能力。可見,用人單位更加注重英語的實際運用能力。

2.跨文化交際能力要求目前,越來越多的知名的外資企業、國有企業以及一些民營企業在招聘廣告上都明確寫道“有海外留學或工作經歷者優先”。這其實就是對員工跨文化交際能力的一種要求。在海外留學或工作過的人由于在不同文化背景過得到過鍛煉,往往被用人單位認為可能外語能力會高一些,關鍵是他們的海外經歷培養了他們的國際化視野,應該比沒有這個經歷的人在對外交往中思維更靈活,溝通交際能力更強。隨著經濟全球化程度的不斷加深,社會更需要較強跨文化交際能力的人才。這種對跨文化交際能力的社會要求應當體現在具體的課程設置上,通過專業課程的學習培養學生在提供英語能力的同時提高文化差異的敏感性,掌握靈活處理不同文化之間的交流和人際溝通的能力。

3.綜合素質要求對于招聘廣告中提到的“對待工作認真、負責、積極熱情”可將其視為工作態度,此外還提出了開拓能力,創新能力,研究能力,溝通能力,人際交往能力,團隊合作精神,適應能力,以及在較強壓力下工作的能力等要求,可以將上述要求歸納為綜合素質要求。通過對招聘廣告中對綜合素質要求的調查顯示工作態度是用人單位最關注的事項之一。對于工作態度的引導雖然很難設置成一門課程,但是學校可以通過課程設置來體現和強化認真嚴謹的精神及學習態度,以便于學生在將來能將此種態度有效地延伸到工作崗位中。其次良好的溝通能力也是用人單位比較注重的。在實際工作中這種通過語言協商討論并達成共識的能力較為重要,因此商務英語專業可以通過開設跨文化交際和商務溝通等課程中以培養和鍛煉學生的溝通能力。

(二)用人單位訪談記錄分析通過走訪一些企業,與用人單位的相關人員進行面對面訪談,將訪談記錄整理分析后,得出用人單位對商務英語專業畢業生的要求可以總結為如下三點:

1.能夠有效地交流能夠與客戶尤其是外國客戶有效交流是企業發展的必要條件以及成功的基礎。很多情況下,盡管做了充足的準備,但由于在傳達產品信息或進行項目策劃時沒有做到有效的交流,或交際技能的欠缺而無法取得預期的效果。一些用人單位指出在這種跨文化的商務交際中,為了避免造成誤解,語言的恰當使用及對雙方文化差異的深刻理解是極其重要的,具備跨文化交際能力的人不僅能夠勝任與外國人的交流,還能夠克服文化優越感和文化偏見,能夠和來自異國文化背景的人互相達成妥協與理解,達到互惠雙贏的結果。

2.能夠熟練運用商務英語語言技能很多企業負責人在訪談的時候都強調英語口語在對外工作中的重要性,希望學校能加強學生在商務交際中口語能力的培養。大部分畢業生在跨文化交際中不能使用較地道的英語進行交流,即便再擅長交際策略及技巧,也不能出色地完成任務。此外,在具有的商務交流中商務專業術語的正確使用也是非常重要的,這就需要學生平時多積累。對商務英語閱讀和寫作的要求如下:熟悉各種體裁的商務文件(如合同、報告、信函、備忘錄等),并能用準確的商務術語和恰當的語言進行撰寫,能夠快速閱讀并找到特定信息。一些用人單位指出大部分商務英語專業畢業生普通英語的閱讀和寫作能力較好,但在商務背景下的英語語言技能就需要加強。

3.能夠較全面且正確地掌握商務知識和商務操作流程具備一定的商務專業知識是商務英語專業學生與英語專業學生的一個重要區別。大部分用人單位認為學校和學生雙方往往重視英語語言能力的提高,對于商務知識有所忽略。一些企業招聘人員在訪談中提到對于像經濟學、管理學、國際金融、國際貿易這些商務知識在商務實踐中使用很多,應加以重視,希望學校能系統開始這些課程。此外,一部分用人單位抱怨學生的實踐經驗太少,招聘的畢業生剛開始無法獨立工作,必須培訓3到6個月才能掌握商務操作流程,較耗費時間和資源。有的企業建議學校增加學生進企業實習的機會,讓學生多到實際工作環境中去體驗和學習。通過用人單位訪談記錄和招聘廣告的分析,可以得出用人單位對商務英語專業畢業生的整體需求有以下幾方面:(1)能夠在商務背景下正確地運用英語的語言能力;(2)熟悉基本的商務知識;(3)熟練掌握商務操作技能;(4)擅于運用交際策略的能力;(5)熟悉國際商務文化,具備跨文化交際的意識及能力;(6)具備較高的綜合素質。

三、對高校商務英語專業課程設置的改進建議

通過前面的需求分析研究,商務英語專業畢業生不但要具備以下能力:(1)外語應用與跨文化溝通能力即具備較強的聽、說、讀、寫、譯能力和運用英語進行跨文化溝通能力;(2)專業實踐與創新能力即具有國際視野,能按國際慣例從事商務活動,處理各種關系的專業實踐能力;了解國際商務發展動態和行業需求,在外經、外貿、外事、管理、金融等領域具有一定的創新能力;(3)綜合素質與職業發展能力即具有良好的職業道德和人文素養,具備較強的自主學習能力、獨立工作和團隊協作能力以及基本的第二外語應用能力。與普通英語相比,商務英語課程設置中的需求分析尤為重要。有效合理的課程設置應該考慮到學習者和社會雙方的需求,并以市場為導向。從市場經濟學的角度來看,我們可以將學校培養的學生視為面向市場的“商品”,將用人單位視為“消費者”。消費者是否會選擇商品取決于其自身的需要,因此,學校在設置課程之前要對用人單位的需求有明確的認識。此外,課程設計者如果對學生選擇商務英語專業的動機及其主觀需求有所了解,那么教學內容和教學方法的選擇也會有相應的改進。

第8篇

不可質疑的是科技英語的翻譯對于一個國家來說是至關重要的。隨著加入WTO,中國比起以前來說更加開放了,并且也緊追世界科技發展的腳步。如此,科技英語的翻譯就成為中國的科學技術發展的及其重要的推動力。好的科技英語翻譯需要翻譯者對英,漢兩種語言都要有良好的了解,能夠自如的將同樣的深層意思用符合不同語言特點的表層結構表達出來;同樣也需要譯者對所涉及學科有基本的了解,而且在日常翻譯實踐中要善于積累有關科技詞匯,盡量使譯文準確,通暢。

二、科技英語的特點

(一)詞匯特點科技英語的詞匯主要分為三大類:普通詞匯,半科技詞匯以及術語和高度技術性的詞匯。普通詞匯在科技英語的行文中還是占絕大多數。現今,半科技詞匯也被認為是普通詞匯,因為其在現代社會中應用也相當廣泛。句法特點

1.長句科技英語的主要特點之一就是長句。因為長句更能將信息表達的更加細致和準確。如果句子太長又會引起讀者的反感,所以大多數科技英語的長句通常會由逗號隔開。例如:Thestressescontinuedtobuildinthisareaoftheship,①wheretherewerelargeopeningsforamainaccess,②themachinerycasingfortheReciprocatingEngineRoom,③theuptakesandintakesfortheboilers,④theashpitdooronportsideofBoilerRoomNo.1,5andtheturbineenginecasing.

2.被動語態科技英語習慣用被動語態表達目的和精確的科技事實。例如:ThemysteryaroseagainwhenthewreckoftheTitanicwasdiscoveredin1985andthehullwasfoundintwopieces.

(二)文體特征科技英語的作者都試圖將語言表達得更加準確、精煉。科技英語的行文樸素,目的就是告訴人們事實,文章結構緊湊嚴密,表達清晰準確,強調客觀性。

三、科技英語翻譯技巧

(一)名詞化在漢語中,名詞通常就只作為名詞使用。而在英語,尤其是科技英語中,名詞可能會指示特性,動作,或是抽象的感受,例如:kindness,movement等。在翻譯這些名詞時,可將其譯成形容詞或動詞。例如:原文:Thestudyprovidedtheloadinginformationneededtotake“snapshots”oftheship’sstateofstressduringthesinkingprocess.譯文:此次研究為能迅速了解船在沉沒過程中的壓力狀況提供了必要的荷載數據。

增減詞匯為了翻譯的更加通順,符合漢語的行文習慣。在科技英語漢譯時可適當增減詞匯。例如:原文:Foursurvivorswithfirsthandknowledge,rememberingprobablythemostimportant–certainlythemosttraumatic–eventintheirlives,disagreedononemajorpoint,譯文:四個擁有第一手資料的生還者,記得可能是最重要的—也一定是最為痛苦的—發生在他們生命中的大事,他們對于一個主要問題持有不同意見。

(二)定語從句的翻譯

1.將定語從句翻譯成定語修飾詞,直接放在關鍵詞前。通過對比中英兩種語言的句子結構,我們可以看出英語中的定語從句可以放在句子中的任何位置。但是在中文中,通常放在關鍵詞前面。所以大部分的定語從句翻譯都可以采用該原則。例如:原文:Theinitialmodelingeffortfocusedonthedeterminationofthelocationandmagnitudeofhigh-stressregionsthatdevelopedinthehullwhilesheremainedonthesurface.譯文:最初的模型著重于在船身還停留在海面上時的高壓區的位置,和在船身上產生的高壓區的重要性的檢測。

2.將定語從句譯為狀語從句。原文:Theextentofthedamageevidentinthesternwreckimpliesthatthebowsectionmayhavepulledthesternsectionquicklybelowthewater’ssurface,resultinginstructuralimplosionsthatcausedsignificantdamage.譯文:船尾部分損毀的面積表明船頭可能將船尾迅速地拉入水中,造成結構上的突然壓縮,這才導致了重大的事故發生。

四、狀語從句的翻譯

(一)時間狀語從句翻譯時,放在主句之前。例如:原文:e.gJustthreehoursafteritcollidedwithaniceberg,themajesticTitanicvanishedbeneaththecoldwatersoftheNorthAtlantic.譯文:在撞擊到冰山的三個小時之后,雄偉的泰坦尼克號消失在了冰冷的北大西洋中。

(二)地點狀語從句翻譯時放在主句之前或之后。例如:原文:e.gThedepthswheretheseeventsoccurredcannotbeestimatedwithanyprecision譯文:這一事件發生的深度不能精確的被測量。

(三)目的狀語從句翻譯時在主句前增加“為了”。例如:原文:Tohelpsolvethismystery,theDiscoveryChannel,indevelopingitsaward-winning“Titanic:AnatomyofaDisaster”televisiondocumentary,approachedGibbs&Cox,Inc.,oneoftheoldestnavalarchitectureandmarineengineeringfirmsintheworld.譯文:為了幫助解開這一謎團,發現頻道在它的獲獎作品“泰坦尼克號:解剖災難”這一電視紀錄片中,連同吉伯斯•考克斯,一家全球歷史最為悠久之一的造船與海洋工程公司共同合作。

(四)比較狀語從句原文:Itisbelievedthatthiscompressionofthehullgirderbroughtaboutthefailureofthesideshellplates,andalsofreedequipmentinsidetheship,suchastheboilersinBoilerRoomNo.1,fromitsfoundations.譯文:人們相信船體大梁的壓縮引起了側框架金屬般的失靈,同時使設備在船內釋放,好像鍋爐在一號鍋爐房內從它的根基釋放一樣。

五、結語

第9篇

1.金融英語詞匯的特征及翻譯  

2.金融英語翻譯中的語序轉換 

3.淺論金融英語文本詞匯的英漢理解與翻譯——以翻譯美聯儲2005年貨幣政策報告為例

4.金融英語翻譯方法和技巧  

5.金融英語翻譯中的社交語境功能 

6.關于強化金融英語課程建設的思考 

7.金融英語的翻譯策略探究  

8.金融英語的語言特點及翻譯 

9.依托金融行業探索高職金融英語教學改革

10.淺析金融英語翻譯

11.應用型人才需求下的金融英語教學探討

12.金融英語長句翻譯探討 

13.論ESP金融英語的詞匯教學

14.金融英語術語的特征及其翻譯 

15.金融英語課程教學質量學生滿意度實證分析——以哈爾濱金融學院為例 

16.淺談金融英語翻譯基本特點 

17.淺析微課在金融英語口語教學中的應用 

18.金融英語翻譯中的關聯原則  

19.高職院校“金融英語”課程教學改革初探 

20.論應用能力培養導向的獨立學院金融英語教學模式 

21.金融英語的語言特點及翻譯策略 

22.金融英語課程教學模式的設計與應用

23.語域理論指導下的金融英語翻譯(英文)  

24.對高校金融英語課程教學對策的思考 

25.基于職業能力導向的金融英語專業教學模式芻議 

26.基于ESP理論的金融英語教學改革初探 

27.談建構主義理論觀照下的金融英語教學改革  

28.高職金融英語分步分層教學模式的研究與探索

29.金融英語教學與學科建設  

30.金融英語詞匯的特點及其翻譯 

31.應用型人才培養視角下的金融英語教學改革

32.金融英語詞匯的翻譯策略探索  

33.以培養應用型人才為導向的金融英語教材建設

34.金融英語課堂教學工作坊:研討型課堂教學改革與實踐 

35.淺析金融英語在實際中的應用——以金融文秘英語為例 

36.提升能力需求視閾下的金融英語教學策略設計

37.語境在金融英語詞匯教學中的應用探析

38.從語域理論解析金融英語翻譯的對等原則——以翻譯國際貨幣基金組織對美國的FSSA報告為例

39.芻議應用型本科院校金融英語教學改革研究

40.金融英語的語言經濟學分析

41.金融英語的語言特征及其翻譯

42.金融英語教學的現狀和存在的問題分析 

43.基于課程設置的金融英語教學探究

44.以英文電影豐富《金融英語》課堂教學的探討

45.國際化就業環境下的金融英語應用模式研究

46.改進金融英語教學的基本構想

47.平行文本在金融英語漢譯中的應用

48.項目化教學法視角下的高職金融英語教學改革

49.淺析金融英語的特點及其翻譯

50.金融英語的詞性轉換研究  

51.金融英語的幾種教學方法

52.金融英語教學策略創新與金融雙語教學共生性研究 

53.基于應用型人才培養的金融英語教學改革研究

54.金融英語教學法初探  

55.高校專門用途英語教學路徑探討——以金融英語教學為例 

56.高職院校金融英語教學現狀分析及對策研究

57.獨立學院《金融英語》教學目標定位探析 

58.金融英語翻譯中的社交語境功能 

59.金融英語詞匯的語義變遷探析 

60.培養大學生學習興趣 改善金融英語課程教學效果 

61.成人金融英語教學的特色與策略 

62.金融英語課程教學改革探析 

63.關于強化民辦高校金融英語教學的思考 

64.金融英語信函的體裁特點與撰寫原則 

65.建構特色金融英語課程體系 服務龍江經濟發展 

66.論金融英語熱點詞匯的翻譯 

67.從圖式理論的角度探討金融英語詞匯教學

68.基于項目教學法的金融英語教學改革探索 

69.基于能力本位的金融英語教學改革  

70.學習金融英語如何“難”中求“易” 

71.金融英語技能競賽與復合型、應用型金融人才培養 

72.開展金融英語技能大賽的必要性研究 

73.人際功能與慕課時代金融英語對復合型人才培養的探究

74.高職院校EOP課程需求分析綱論——以金融英語課程為例

75.試論上海二本院校金融英語專業詞匯教學 

76.滿足應用型人才需求,改革金融英語教學

77.金融專業學生在金融英語閱讀方面存在的障礙及對策分析 

78.淺析以多模態理論為基礎的金融英語教學 

79.金融英語教材建設芻議  

80.高職高專金融英語教學改革初探 

81.金融英語術語的特點及其翻譯

82.多媒體網絡環境下金融英語教學模式探析

83.關于金融英語翻譯教學的調查與研究 

84.專業人才培養視閾下的金融英語教學探究

85.圖式理論在金融英語教學中的運用策略

86.基于時事新聞的金融英語教學探討 

87.基于平行雙語語料庫金融英語翻譯課程教學模式探索 

89.Grice方式準則在金融英語翻譯中的應用

90.金融英語詞匯中的縮略語現象

91.基于金融英語能力的復合型金融人才培養研究

92.金融英語技能競賽設計 

93.淺談高職高專“金融英語”課程中的實踐教學 

94.高職金融英語教學的研究與實踐 

95.淺談國際化就業環境下的金融英語應用

96.當前金融英語熱點詞匯分析

97.金融英語與金融全球化競爭

98.語用學在金融英語教學中的作用

99.淺談微課在金融英語口語教學中的應用

100.“學習者為中心”教學理念下金融英語教學探討  

101.主位結構理論在金融英語教學中的應用

102.金融英語培訓中語用能力的培養 

103.基于福建綠色經濟的發展研發金融英語校本課程探究 

104.金融英語證書綜合考試備考策略 

105.高職高專金融英語教學現狀及對策探究 

106.圖式理論與金融英語閱讀模式構建及教學啟示 

107.從翻譯生態環境視角淺析金融英語新聞的漢譯 

108.高職高專《金融英語》教學改革初探

109.基于溝通目的的金融英語培訓模式初探

110.高職院校金融英語教學現狀及對策 

111.淺談高職金融英語教材與教學 

112.談談多媒體金融英語計算機輔助教學的發展

113.高職高專金融英語課程改革中的幾點經驗 

114.對等理論觀照下金融英語隱喻翻譯的喻體形象取舍策略

115.金融英語的詞匯特點及翻譯探討

116.概念整合理論視角下的金融英語詞匯學習—以金融術語為例

117.金融專業英語聽力理解與技能芻議

118.元認知策略在金融英語閱讀教學中的運用

119.“學習者為中心”教學理念下金融英語教學探討 

120.金融英語的詞匯擬人修辭手段

121.大學英語拓展課程金融英語聽說研究型課堂教學范式創新 

122.金融專業英語詞匯的學習與掌握

主站蜘蛛池模板: 亚洲最大黄色网址| 美女毛片一区二区三区四区| 91色在线观看| 99久在线精品99re6视频| 亚洲香蕉在线观看| 伊人久久精品无码麻豆一区| 全黄h全肉远古| 北岛玲日韩精品一区二区三区| 可以免费看污视频的网站| 和几个女同事的激情性事| 四虎成人精品国产永久免费无码| 国产aⅴ一区二区三区| 可以免费观看的一级毛片| 再深点灬舒服灬太大了ship | 久久青青草原亚洲av无码| 乱了嗯祖宗啊用力| 久久亚洲高清观看| 久久中文字幕人妻丝袜| 久久久久99精品成人片试看| 中文字幕成人精品久久不卡| 中文亚洲成a人片在线观看| 一区二区三区欧美在线| bt√天堂资源在线官网| 91中文字幕在线| 久久综合九色综合97伊人麻豆 | 日本久久久久中文字幕| 性短视频在线观看免费不卡流畅| 好爽好深好猛好舒服视频上| 在总受文里抢主角攻np| 国产真实乱了在线播放| 国产亚洲综合久久| 免费一级毛片在播放视频| 亚洲成a人片在线观看中文| 久久精品亚洲一区二区| 三级精品视频在线播放| 91麻豆精品在线观看| 香蕉成人伊视频在线观看| 精品一区中文字幕| 欧美三级日韩三级| 成年免费a级毛片免费看无码 | 国产性色视频在线高清|